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INTEGRAL EQUATION METHODS FOR FLUIDS

Why integral equation methods?

Geometric flexibility

Well-conditioned formulations

Existence of fast algorithms (FMM)

[Malhotra et al., 2017]
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NAVIER-STOKES TO MODIFIED STOKES

Navier-Stokes

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∆u, x ∈ Ω

∇ · u = 0, x ∈ Ω ,

u = f, x ∈ ∂Ω.

IMEX (Euler) Discretization

uN+1 − uN

δt
− 1

Re
∆uN+1 +∇pN+1 = F, x ∈ Ω,

∇ · uN+1 = 0, x ∈ Ω,

uN+1 = f, x ∈ ∂Ω.
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NAVIER-STOKES TO MODIFIED STOKES (CONT.)

Let uN+1 = v + uH .

Particular Solution (v)

v − δt

Re
∆v + δt∇pV = δtF + uN , x ∈ Ω ,

∇ · v = 0, x ∈ Ω .

Boundary Correction (uH) — Modified Stokes Equation

uH −
δt

Re
∆uH +∇pH = 0, x ∈ Ω ,

∇ · uH = 0, x ∈ Ω ,

uH = f − v, x ∈ ∂Ω .
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THE MODIFIED STOKESLET

Let λ =
√
Re/δt. The fundamental solution of the modified

Stokes equations is the

Modified Stokeslet

G(x, y) = (−∇⊥ ⊗∇⊥)G(x, y),

where

Modified Biharmonic Green’s Function

G(x, y) = − 1

2πλ2
(log ‖x− y‖+ K0(λ‖x− y‖)) .

Particular Solution

v(x) =

∫
Ω

G(x, y)(δtF(y) + uN(y)) dV (y)

is a particular solution.
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DOUBLE LAYER POTENTIAL

We represent the boundary correction uH as a

Double Layer Potential

uH(x) =

∫
∂Ω

D(x, y)σ(y) ds(y) ,

where

D(x, y) = ∇GL(x, y)⊗ν+∇⊥⊗∇⊥(∂νG(x, y))+∇⊥⊗∇(∂τG(x, y)) .

Get a second kind integral equation (SKIE) for σ. This is a good
thing!



EVALUATING THE
BOUNDARY CORRECTION



BOUNDARY INTEGRAL EQUATIONS

For good performance, need:

High-order accurate
quadrature for singular
integrals (e.g. generalized
Gaussian quadrature)

Fast solution methods for
structured, dense linear
systems (e.g. HSS, HODLR,
GMRES)

Fast, accurate layer
potential evaluation,
including near-singular
points (e.g. quadrature by
expansion)

Figure: Visualization of QBX idea. Taken from Klöckner,
et al. 2012.
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FAST, STABLE SUMS

To implement an integral equation method (both fast solvers and
fast QBX), we need to be able to compute sums of the form

u(xi ) =
n∑

j=1

qj∂vjwjG(xi , sj)

quickly and stably (and its derivatives)

Let

A =


∂v1w1G(x1, s1) ∂v2w2G(x1, s2) · · · ∂vnwnG(x1, sn)
∂v1w1G(x2, s1) ∂v2w2G(x2, s2) · · · ∂vnwnG(x2, sn)

...
...

...
∂v1w1G(xm, s1) ∂v2w2G(xm, s2) · · · ∂vnwnG(xm, sn)


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LOW-RANK INTERACTIONS
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G(xm, s2) · · · ∂vnwnG(xm, sn)



Well-separated points

singular values of A for various values of m and n

The rank is low,
independent of
number of sources
and targets

For certain kernels,
low-rank
decompositions are
known analytically
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NUMERICAL INSTABILITY

G(x, y) = − 1

2πλ2
(log ‖x− y‖+ K0(λ‖x− y‖)) .

Why not use existing tech for log and K0 and add together?
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Numerical Experiment

u(x;λ) =

ns∑
j=1

qj∂vjwjG(x, sj) ,

uL(x;λ) = − 1

2πλ2

ns∑
j=1

qj∂vjwj log ‖x− sj‖ ,

uK (x;λ) =
1

2πλ2

ns∑
j=1

qj∂vjwjK0(λ‖x− sj‖) .

What is the error (in floating point) in
evaluating u as u = uL − uK?
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NUMERICAL INSTABILITY (CONT.)

G(x, y) = − 1

2πλ2
(log ‖x− y‖+ K0(λ‖x− y‖)) .

Why not use existing tech for log and K0 and add together?

(a) Interior problem
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(b) Exterior problem
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The error increases as the product of λ =
√

Re/δt and the radius
of the disc R goes to zero.



THE MEANING OF λR

Note that λ =
√

Re/δt

The value of λR is small if

The Reynolds number is small (viscous fluids)

The grid is fine

Time steps are relatively long

Note that λR < 1 when δt > ReR2, i.e. when the CFL condition
is violated. This regime is important for implicit methods for
viscous fluids.
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Our goal: analytical formulas for the low rank interaction between
well separated points which are stable for any λR.

Go back to basics: look that the separation of variables problem
for the modified biharmonic equation
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SEPARATION OF VARIABLES

Let Ω be the interior or exterior of a disc of radius R and consider
the modified biharmonic equation:

∆(∆− λ2)u = 0 , x ∈ Ω ,

u = f , ∂nu = g , x ∈ ∂Ω .

Separation of Variables Representation

u(r , θ) =
∞∑

n=−∞
un(r)e inθ .

ODE for un(r)

(
d2

dr2
+

1

r

d

dr
− n2

r2

)(
d2

dr2
+

1

r

d

dr
− n2

r2
− λ2

)
un(r) = 0 .
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SEPARATION OF VARIABLES (CONT.)

ODE for un(r)

(
d2

dr2
+

1

r

d

dr
− n2

r2

)(
d2

dr2
+

1

r

d

dr
− n2

r2
− λ2

)
un(r) = 0 .

Four linearly independent solutions: r |n|, In(λr), r−|n|, and Kn(λr).

Interior Problem

By imposing continuity at r = 0, the functions r |n| and In(λr) are a
basis for the interior problem.

Exterior Problem

By imposing decay conditions r =∞, the functions r−|n| and
Kn(λr) are a basis for the exterior problem.
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A BAD BASIS (EXT.)

For the exterior problem, we have un(r) = αnr
−|n| + βnKn(λr).

Coefficient Recovery Problem

 R−|n| Kn(λR)

−|n|R−|n|−1 −λ
2

(Kn−1(λR) + Kn+1(λR))

(αn

βn

)
=

(
fn
gn

)
.

This problem is ill-conditioned for small λR. Intuitively, this is
because Kn(λr) and r−|n| are similar functions for small r .

Asymptotic Expansion for Kn(λr)

Kn (λr) = 1
2
( 1

2
λr)−|n|

|n|−1∑
k=0

(|n| − k − 1)!

k!
(− 1

4
λr 2)k + (−1)|n|+1 ln

(
1
2
λr
)
In (λr)

+ (−1)|n| 1
2
( 1

2
λr)|n|

∞∑
k=0

(ψ (k + 1) + ψ (|n|+ k + 1))
( 1

4
λr 2)k

k!(|n|+ k)!
.
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A BETTER BASIS (EXT.)

We can define a new basis function for the exterior problem which
is not asymptotically similar to r−|n| and Kn.

Definition of Qn

Qn(r) = Kn(λr)− 2|n|−1 (|n| − 1)!

λ|n|r |n|
.

Qn has a different leading order term for small λ and R.

The pair (Qn,Kn) is a better conditioned basis than
(r−|n|,Kn) in the small λR regime.

Qn is still a solution of the ODE for un because it’s a linear
combo of r−|n| and Kn.

It is simple to evaluate Qn with tweaks to existing software.
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A BAD BASIS (INT.)

For the interior problem, we have that un(r) = αnr
|n| + βnIn(λr).

Coefficient Recovery Problem

 R |n| In(λR)

|n|R |n|−1 λ

2
(In−1(λR) + In+1(λR))

(αn

βn

)
=

(
fn
gn

)
.

This problem is again ill-conditioned for small λR.

Asymptotic Expansion for In(λr)

In(λr) =
∞∑
k=0

(
λr

2

)2k+|n|
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NUMERICAL RESULTS (CONT.)

Question

What is the practical effect of the condition number of the
coefficient recovery problem on the accuracy of the solution?
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NUMERICAL RESULTS (CONT.)

Errors for the exterior problem: (r−|n|,Kn) vs (Qn,Kn). Top row:
λ→ 0. Bottom row: R → 0.
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NUMERICAL RESULTS (CONT.)

Errors for the interior problem: (r |n|, In) vs (r |n|,Pn). Top row:
λ→ 0. Bottom row: R → 0.
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REALITY CHECK

How is this a decomposition?

Recall

u(xi ) =
n∑

j=1

qj∂vjwjG(xi , sj)

A =


∂v1w1

G(x1, s1) ∂v2w2
G(x1, s2) · · · ∂vnwnG(x1, sn)

∂v1w1
G(x2, s1) ∂v2w2

G(x2, s2) · · · ∂vnwnG(x2, sn)

.

.

.

.

.

.

.

.

.
∂v1w1

G(xm, s1) ∂v2w2
G(xm, s2) · · · ∂vnwnG(xm, sn)



Well-separated points
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ANALYTICAL DECOMPOSITION

A = LRᵀ.

The form of L is straightforward

L =


Q0(|x1 − c|) K0(λ|x1 − c|) · · · Qp(|x1 − c|)e ipθ1 Kp(λ|x1 − c|)e ipθ1

Q0(|x2 − c|) K0(λ|x2 − c|) · · · Qp(|x2 − c|)e ipθ2 Kp(λ|x2 − c|)e ipθ2

.

.

.

.

.

.

.

.

.

.

.

.

Q0(|xm − c|) K0(λ|xm − c|) · · · Qp(|xm − c|)e ipθm Kp(λ|xm − c|)e ipθm



What is Rᵀ? It is the map from the sources to the coefficients

Rᵀ =

each mode

solve 2× 2

for coeffs

separate

modes with

FFT

evaluate both

u and ∂nu on disc

boundary

Note that there is an analytical formula for Rᵀ [Askham, 2017].
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boundary

Note that there is an analytical formula for Rᵀ [Askham, 2017].



WHAT OF EFFICIENCY?

Because the formulas for L and Rᵀ are known, forming these
matrices is O((m + n)p).

The SVD, on the other hand is O(mn2).
Even randomized methods for the SVD are O(mnp).

It is not always the case that sources are well-separated from
targets. Can we make a stable FMM with the above?
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AN FMM

The preceding provides a stable fast multipole method

A fast multipole method is based on:

1 a formula for representing the sum due to a localized subset of
the points (a multipole expansion). (Qn,Kn)

2 a formula for representing the sum due to points outside of a
disc (a local expansion). (r |n|,Pn)

3 formulas for translating between these representations
(translation operators). see the preprint!

4 a hierarchical organization of source and target points in space
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COMPUTING THE
PARTICULAR SOLUTION



EVALUATING THE PARTICULAR SOLUTION

To compute the particular solution, we need to evaluate integrals
of the form

v(x) = Vf (x) :=

∫
Ω
K(x, y)f (y) dy ,

where K(x, y) = log |x− y| or K(x, y) = K0(λ|x− y|).

No solve, just apply

Weakly singular integrand

Expensive on an unstructured discretization (adpative
quadrature, etc.)

Fast methods for regular domains

Disc solvers
“Box codes” (Ethridge and Greengard, Cheng et al., Langston
and Zorin)
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BOX CODES, IN BRIEF

Box codes (typically) work on level-restricted trees and are very
efficient (density f defined on leaves):

Limited number of possible local interactions (precomputation
of integrals to near machine precision)
(plane wave) FMM for far-field
Very fast, even on adaptive grids
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BOX CODE SPEED



BOX CODE ERROR ESTIMATE

The application of a bounded operator is easy to analyze

The box code computes the volume integral at collocation nodes
to a specified precision.

Notation:

f̃ : approximation to f by polynomials on each leaf

Ṽ f̃ (x): value of V f̃ (x) computed using box code

ε: precision of FMM

From multipole estimates:

|Ṽ f̃ (x)− V f̃ (x)| ≤ ε‖f̃ ‖1 ,

From triangle inequality and boundedness of V :

|Ṽ f̃ (x)− Vf (x)|
‖f̃ ‖∞

≤ ε|Ω|+ C (Ω)
‖f − f̃ ‖∞
‖f̃ ‖∞

.

Gives an a priori error estimate (similar for ∇V ).
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Ṽ f̃ (x): value of V f̃ (x) computed using box code

ε: precision of FMM

From multipole estimates:
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Ṽ f̃ (x): value of V f̃ (x) computed using box code

ε: precision of FMM

From multipole estimates:
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EMBEDDING IN A BOX

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Figure: The domain Ω with an adaptive tree structure
overlaying it.

Let Ω be contained in a box ΩB

and let fe |Ω = f be defined on all
of ΩB . Then

Vfe(x) =

∫
ΩB

GL(x, y)fe(y) dy

is another particular solution and
Vfe can be computed using a box
code.



FUNCTION EXTENSION
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Figure: The domain Ω with an adaptive tree structure
overlaying it.

What if a smooth extension fe is
not readily available?

It must be computed in some
way.



COMPUTING THE EXTENDED FUNCTION

Figure: Example of a “cut-cell”.

Extend by zero
[Ethridge and Greengard, 2001]

Local function extension
[Ethridge, 2000, Langston, 2012]

Global extension by layer potential
[Askham, 2016] (C 0) and
[Rachh and Askham, 2017] (C 1)

Globalized local extension
[Fryklund et al., 2017] (PUX)
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EXTENSION WITH LAYER POTENTIALS

Let f be defined on Ω with boundary Γ. Then, define a function w
on R2 \ Ω as the solution of

∆w = 0 in R2 \ Ω ,

w = f |Γ on Γ .

Then fe = f on Ω and fe = w outside is a globally continuous
extension of f .

w can be computed using the same numerical tools as for uh
(generalized Gaussian quads, fast solvers, QBX)

smoother extensions can be obtained as solutions of
polyharmonic problems.
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ERROR ESTIMATE FOR NON-SMOOTH fe

Recall the a priori error bound

|Ṽ f̃e(x)− Vfe(x)|
‖f̃e‖∞

≤ ε|Ω|+ C (Ω)
‖fe − f̃e‖∞
‖f̃e‖∞

Implied convergence rate

Conv. Order Vf Conv. Order ∇Vf
zero extension 0 0
C 0 extension 1 1
C 1 extension 2 2

These aren’t amazing. What rate do we observe?
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|Ṽ f̃e(x)− Vfe(x)|
‖f̃e‖∞

≤ ε|Ω|+ C (Ω)
‖fe − f̃e‖∞
‖f̃e‖∞

Implied convergence rate

Conv. Order Vf Conv. Order ∇Vf
zero extension 0 0
C 0 extension 1 1
C 1 extension 2 2

These aren’t amazing. What rate do we observe?



POISSON EQUATION EXAMPLES
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Figure: The domain Ω with an adaptive tree structure
overlaying it.

∆u = f in Ω ,

u = ub on Γ .

We set f and ub so that the
solution u is given by

u(x) = sin(10(x1+x2))+x2
1−3x2+8 .



EXTENDED f

We extend f using the method and tools described above.



CONVERGENCE RATE (UNIFORM GRID)
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OBSERVED CONVERGENCE RATE

To see that you gain 1 order:

v(x) = − 1

2π

∫
log ‖x−y‖f (y) dy , ∇v(x) = − 1

2π

∫
x− y

‖x− y‖2
f (y) dy

x

Local contribution gets
weighted by area of a cell
(gain h2 for log r and h for
1/r)

For the far-field, only
O(1/h) of the boxes are
irregular (have to add up
carefully for gradient) and
each is area h2

The gain of 2 orders for u is somewhat mysterious!
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ADAPTIVE GRIDDING STRATEGIES

What are good (a priori) strategies for adaptive grids? Recall that
f̃e is the local polynomial interpolant on each box.

1 Enforce that ‖fe − f̃e‖ ≤ tol on each leaf

2 Enforce that h2‖fe − f̃e‖ ≤ tol on each leaf

3 Enforce that h‖fe − f̃e‖ ≤ tol on each leaf

4 Hybrid: enforce one criterion on irregular boxes and another
on regular boxes (these perform best)

Note that by storing local expansions and QBX expansions from a
QBX FMM, the QBX method gives you an oracle for fe
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ADAPTIVE PERFORMANCE

Results for hybrid schemes
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MORE DIFFICULT PROBLEM
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Figure: Adaptive box structure.

∆u = f in Ω ,

u = ub on Γ .

We set f and ub so that the
solution u is given by

u(x) = sin(10(x1 + x2)) + x2
1

−3x2 + 8 + e−(500x1)2
,

which requires lots of refinement
near the x2 axis.



ERROR (ADAPTIVE PERFORMANCE)
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Figure: Error in potential vs. number of discretization
nodes
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Figure: Error in gradient vs. number of discretization
nodes



FUTURE WORK

Some plans

Apply modified biharmonic FMM to Navier-Stokes integral
equation methods

Release wrapped solver with latest and greatest QBX
implementation

Implement adaptive-friendly version of biharmonic code



THANK YOU

Thank you.
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