
ADAPTIVE MESHES AND
EMBEDDED BOUNDARY

INTEGRAL METHODS

Travis Askham (University of Washington)
March 15, 2018. ICERM workshop on “Fast Algorithms for Static
and Dynamically Changing Point Configurations”

EMBEDDED BOUNDARY INTEGRAL METHODS

Collaborators:

Leslie Greengard

Antoine Cerfon

Manas Rachh

Mary Catherine
Kropinski

Ludvig af
Klinteberg

Bryan Quaife

Funding from the Air Force Office of Scientific Research (FA9550-10-1-0180 and FA9550-15-1-0385).

INTEGRAL EQUATION METHODS FOR FLUIDS

Why integral equation methods?

Geometric flexibility

Well-conditioned formulations

Existence of fast algorithms (FMM)

[Malhotra et al., 2017]

Re{z}

Im
{z

}

The error in U(z)

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−15.5

−15

−14.5

−14

−13.5

−13

−12.5

[Ojala, 2012]

Hoskins, Rachh, Serkh

NAVIER-STOKES TO MODIFIED STOKES

Navier-Stokes

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∆u, x ∈ Ω

∇ · u = 0, x ∈ Ω ,

u = f, x ∈ ∂Ω.

IMEX (Euler) Discretization

uN+1 − uN

δt
− 1

Re
∆uN+1 +∇pN+1 = F, x ∈ Ω,

∇ · uN+1 = 0, x ∈ Ω,

uN+1 = f, x ∈ ∂Ω.

NAVIER-STOKES TO MODIFIED STOKES

Navier-Stokes

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∆u, x ∈ Ω

∇ · u = 0, x ∈ Ω ,

u = f, x ∈ ∂Ω.

IMEX (Euler) Discretization

uN+1 − uN

δt
− 1

Re
∆uN+1 +∇pN+1 = F, x ∈ Ω,

∇ · uN+1 = 0, x ∈ Ω,

uN+1 = f, x ∈ ∂Ω.

NAVIER-STOKES TO MODIFIED STOKES (CONT.)

Let uN+1 = v + uH .

Particular Solution (v)

v − δt

Re
∆v + δt∇pV = δtF + uN , x ∈ Ω ,

∇ · v = 0, x ∈ Ω .

Boundary Correction (uH) — Modified Stokes Equation

uH −
δt

Re
∆uH +∇pH = 0, x ∈ Ω ,

∇ · uH = 0, x ∈ Ω ,

uH = f − v, x ∈ ∂Ω .

NAVIER-STOKES TO MODIFIED STOKES (CONT.)

Let uN+1 = v + uH .

Particular Solution (v)

v − δt

Re
∆v + δt∇pV = δtF + uN , x ∈ Ω ,

∇ · v = 0, x ∈ Ω .

Boundary Correction (uH) — Modified Stokes Equation

uH −
δt

Re
∆uH +∇pH = 0, x ∈ Ω ,

∇ · uH = 0, x ∈ Ω ,

uH = f − v, x ∈ ∂Ω .

THE MODIFIED STOKESLET

Let λ =
√
Re/δt. The fundamental solution of the modified

Stokes equations is the

Modified Stokeslet

G(x, y) = (−∇⊥ ⊗∇⊥)G(x, y),

where

Modified Biharmonic Green’s Function

G(x, y) = − 1

2πλ2
(log ‖x− y‖+ K0(λ‖x− y‖)) .

Particular Solution

v(x) =

∫
Ω

G(x, y)(δtF(y) + uN(y)) dV (y)

is a particular solution.

THE MODIFIED STOKESLET

Let λ =
√
Re/δt. The fundamental solution of the modified

Stokes equations is the

Modified Stokeslet

G(x, y) = (−∇⊥ ⊗∇⊥)G(x, y),

where

Modified Biharmonic Green’s Function

G(x, y) = − 1

2πλ2
(log ‖x− y‖+ K0(λ‖x− y‖)) .

Particular Solution

v(x) =

∫
Ω

G(x, y)(δtF(y) + uN(y)) dV (y)

is a particular solution.

DOUBLE LAYER POTENTIAL

We represent the boundary correction uH as a

Double Layer Potential

uH(x) =

∫
∂Ω

D(x, y)σ(y) ds(y) ,

where

D(x, y) = ∇GL(x, y)⊗ν+∇⊥⊗∇⊥(∂νG(x, y))+∇⊥⊗∇(∂τG(x, y)) .

Get a second kind integral equation (SKIE) for σ. This is a good
thing!

EVALUATING THE
BOUNDARY CORRECTION

BOUNDARY INTEGRAL EQUATIONS

For good performance, need:

High-order accurate
quadrature for singular
integrals (e.g. generalized
Gaussian quadrature)

Fast solution methods for
structured, dense linear
systems (e.g. HSS, HODLR,
GMRES)

Fast, accurate layer
potential evaluation,
including near-singular
points (e.g. quadrature by
expansion)

Figure: Visualization of QBX idea. Taken from Klöckner,
et al. 2012.

BOUNDARY INTEGRAL EQUATIONS

For good performance, need:

High-order accurate
quadrature for singular
integrals (e.g. generalized
Gaussian quadrature)

Fast solution methods for
structured, dense linear
systems (e.g. HSS, HODLR,
GMRES)

Fast, accurate layer
potential evaluation,
including near-singular
points (e.g. quadrature by
expansion)

Figure: Visualization of QBX idea. Taken from Klöckner,
et al. 2012.

BOUNDARY INTEGRAL EQUATIONS

For good performance, need:

High-order accurate
quadrature for singular
integrals (e.g. generalized
Gaussian quadrature)

Fast solution methods for
structured, dense linear
systems (e.g. HSS, HODLR,
GMRES)

Fast, accurate layer
potential evaluation,
including near-singular
points (e.g. quadrature by
expansion)

Figure: Visualization of QBX idea. Taken from Klöckner,
et al. 2012.

BOUNDARY INTEGRAL EQUATIONS

For good performance, need:

High-order accurate
quadrature for singular
integrals (e.g. generalized
Gaussian quadrature)

Fast solution methods for
structured, dense linear
systems (e.g. HSS, HODLR,
GMRES)

Fast, accurate layer
potential evaluation,
including near-singular
points (e.g. quadrature by
expansion)

Figure: Visualization of QBX idea. Taken from Klöckner,
et al. 2012.

FAST, STABLE SUMS

To implement an integral equation method (both fast solvers and
fast QBX), we need to be able to compute sums of the form

u(xi) =
n∑

j=1

qj∂vjwjG(xi , sj)

quickly and stably (and its derivatives)

Let

A =


∂v1w1G(x1, s1) ∂v2w2G(x1, s2) · · · ∂vnwnG(x1, sn)
∂v1w1G(x2, s1) ∂v2w2G(x2, s2) · · · ∂vnwnG(x2, sn)

...
...

...
∂v1w1G(xm, s1) ∂v2w2G(xm, s2) · · · ∂vnwnG(xm, sn)



FAST, STABLE SUMS

To implement an integral equation method (both fast solvers and
fast QBX), we need to be able to compute sums of the form

u(xi) =
n∑

j=1

qj∂vjwjG(xi , sj)

quickly and stably (and its derivatives)

Let

A =


∂v1w1G(x1, s1) ∂v2w2G(x1, s2) · · · ∂vnwnG(x1, sn)
∂v1w1G(x2, s1) ∂v2w2G(x2, s2) · · · ∂vnwnG(x2, sn)

...
...

...
∂v1w1G(xm, s1) ∂v2w2G(xm, s2) · · · ∂vnwnG(xm, sn)



LOW-RANK INTERACTIONS

A =


∂v1w1

G(x1, s1) ∂v2w2
G(x1, s2) · · · ∂vnwnG(x1, sn)

∂v1w1
G(x2, s1) ∂v2w2

G(x2, s2) · · · ∂vnwnG(x2, sn)

.

.

.

.

.

.

.

.

.
∂v1w1

G(xm, s1) ∂v2w2
G(xm, s2) · · · ∂vnwnG(xm, sn)



Well-separated points

singular values of A for various values of m and n

The rank is low,
independent of
number of sources
and targets

For certain kernels,
low-rank
decompositions are
known analytically

LOW-RANK INTERACTIONS

A =


∂v1w1

G(x1, s1) ∂v2w2
G(x1, s2) · · · ∂vnwnG(x1, sn)

∂v1w1
G(x2, s1) ∂v2w2

G(x2, s2) · · · ∂vnwnG(x2, sn)

.

.

.

.

.

.

.

.

.
∂v1w1

G(xm, s1) ∂v2w2
G(xm, s2) · · · ∂vnwnG(xm, sn)



Well-separated points

singular values of A for various values of m and n

The rank is low,
independent of
number of sources
and targets

For certain kernels,
low-rank
decompositions are
known analytically

LOW-RANK INTERACTIONS

A =


∂v1w1

G(x1, s1) ∂v2w2
G(x1, s2) · · · ∂vnwnG(x1, sn)

∂v1w1
G(x2, s1) ∂v2w2

G(x2, s2) · · · ∂vnwnG(x2, sn)

.

.

.

.

.

.

.

.

.
∂v1w1

G(xm, s1) ∂v2w2
G(xm, s2) · · · ∂vnwnG(xm, sn)



Well-separated points

singular values of A for various values of m and n

The rank is low,
independent of
number of sources
and targets

For certain kernels,
low-rank
decompositions are
known analytically

LOW-RANK INTERACTIONS

A =


∂v1w1

G(x1, s1) ∂v2w2
G(x1, s2) · · · ∂vnwnG(x1, sn)

∂v1w1
G(x2, s1) ∂v2w2

G(x2, s2) · · · ∂vnwnG(x2, sn)

.

.

.

.

.

.

.

.

.
∂v1w1

G(xm, s1) ∂v2w2
G(xm, s2) · · · ∂vnwnG(xm, sn)



Well-separated points

singular values of A for various values of m and n

The rank is low,
independent of
number of sources
and targets

For certain kernels,
low-rank
decompositions are
known analytically

NUMERICAL INSTABILITY

G(x, y) = − 1

2πλ2
(log ‖x− y‖+ K0(λ‖x− y‖)) .

Why not use existing tech for log and K0 and add together?

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Numerical Experiment

u(x;λ) =

ns∑
j=1

qj∂vjwjG(x, sj) ,

uL(x;λ) = − 1

2πλ2

ns∑
j=1

qj∂vjwj log ‖x− sj‖ ,

uK (x;λ) =
1

2πλ2

ns∑
j=1

qj∂vjwjK0(λ‖x− sj‖) .

What is the error (in floating point) in
evaluating u as u = uL − uK?

NUMERICAL INSTABILITY

G(x, y) = − 1

2πλ2
(log ‖x− y‖+ K0(λ‖x− y‖)) .

Why not use existing tech for log and K0 and add together?

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Numerical Experiment

u(x;λ) =

ns∑
j=1

qj∂vjwjG(x, sj) ,

uL(x;λ) = − 1

2πλ2

ns∑
j=1

qj∂vjwj log ‖x− sj‖ ,

uK (x;λ) =
1

2πλ2

ns∑
j=1

qj∂vjwjK0(λ‖x− sj‖) .

What is the error (in floating point) in
evaluating u as u = uL − uK?

NUMERICAL INSTABILITY

G(x, y) = − 1

2πλ2
(log ‖x− y‖+ K0(λ‖x− y‖)) .

Why not use existing tech for log and K0 and add together?

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Numerical Experiment

u(x;λ) =

ns∑
j=1

qj∂vjwjG(x, sj) ,

uL(x;λ) = − 1

2πλ2

ns∑
j=1

qj∂vjwj log ‖x− sj‖ ,

uK (x;λ) =
1

2πλ2

ns∑
j=1

qj∂vjwjK0(λ‖x− sj‖) .

What is the error (in floating point) in
evaluating u as u = uL − uK?

NUMERICAL INSTABILITY

G(x, y) = − 1

2πλ2
(log ‖x− y‖+ K0(λ‖x− y‖)) .

Why not use existing tech for log and K0 and add together?

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Numerical Experiment

u(x;λ) =

ns∑
j=1

qj∂vjwjG(x, sj) ,

uL(x;λ) = − 1

2πλ2

ns∑
j=1

qj∂vjwj log ‖x− sj‖ ,

uK (x;λ) =
1

2πλ2

ns∑
j=1

qj∂vjwjK0(λ‖x− sj‖) .

What is the error (in floating point) in
evaluating u as u = uL − uK?

NUMERICAL INSTABILITY

G(x, y) = − 1

2πλ2
(log ‖x− y‖+ K0(λ‖x− y‖)) .

Why not use existing tech for log and K0 and add together?

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Numerical Experiment

u(x;λ) =

ns∑
j=1

qj∂vjwjG(x, sj) ,

uL(x;λ) = − 1

2πλ2

ns∑
j=1

qj∂vjwj log ‖x− sj‖ ,

uK (x;λ) =
1

2πλ2

ns∑
j=1

qj∂vjwjK0(λ‖x− sj‖) .

What is the error (in floating point) in
evaluating u as u = uL − uK?

NUMERICAL INSTABILITY (CONT.)

G(x, y) = − 1

2πλ2
(log ‖x− y‖+ K0(λ‖x− y‖)) .

Why not use existing tech for log and K0 and add together?

(a) Interior problem

10−5 10−2 101

λR

10−14

10−11

10−8

10−5

10−2

101

E
rr

or

Potential

Gradient

Hessian

(b) Exterior problem

10−6 10−3 100

λR

10−14

10−11

10−8

10−5

10−2

101

E
rr

or

Potential

Gradient

Hessian

The error increases as the product of λ =
√

Re/δt and the radius
of the disc R goes to zero.

THE MEANING OF λR

Note that λ =
√

Re/δt

The value of λR is small if

The Reynolds number is small (viscous fluids)

The grid is fine

Time steps are relatively long

Note that λR < 1 when δt > ReR2, i.e. when the CFL condition
is violated. This regime is important for implicit methods for
viscous fluids.

THE MEANING OF λR

Note that λ =
√

Re/δt

The value of λR is small if

The Reynolds number is small (viscous fluids)

The grid is fine

Time steps are relatively long

Note that λR < 1 when δt > ReR2, i.e. when the CFL condition
is violated. This regime is important for implicit methods for
viscous fluids.

THE MEANING OF λR

Note that λ =
√

Re/δt

The value of λR is small if

The Reynolds number is small (viscous fluids)

The grid is fine

Time steps are relatively long

Note that λR < 1 when δt > ReR2, i.e. when the CFL condition
is violated. This regime is important for implicit methods for
viscous fluids.

THE MEANING OF λR

Note that λ =
√

Re/δt

The value of λR is small if

The Reynolds number is small (viscous fluids)

The grid is fine

Time steps are relatively long

Note that λR < 1 when δt > ReR2, i.e. when the CFL condition
is violated. This regime is important for implicit methods for
viscous fluids.

THE MEANING OF λR

Note that λ =
√

Re/δt

The value of λR is small if

The Reynolds number is small (viscous fluids)

The grid is fine

Time steps are relatively long

Note that λR < 1 when δt > ReR2, i.e. when the CFL condition
is violated. This regime is important for implicit methods for
viscous fluids.

THE MEANING OF λR

Note that λ =
√

Re/δt

The value of λR is small if

The Reynolds number is small (viscous fluids)

The grid is fine

Time steps are relatively long

Note that λR < 1 when δt > ReR2, i.e. when the CFL condition
is violated. This regime is important for implicit methods for
viscous fluids.

OUR GOAL

Our goal: analytical formulas for the low rank interaction between
well separated points which are stable for any λR.

Go back to basics: look that the separation of variables problem
for the modified biharmonic equation

OUR GOAL

Our goal: analytical formulas for the low rank interaction between
well separated points which are stable for any λR.

Go back to basics: look that the separation of variables problem
for the modified biharmonic equation

SEPARATION OF VARIABLES

Let Ω be the interior or exterior of a disc of radius R and consider
the modified biharmonic equation:

∆(∆− λ2)u = 0 , x ∈ Ω ,

u = f , ∂nu = g , x ∈ ∂Ω .

Separation of Variables Representation

u(r , θ) =
∞∑

n=−∞
un(r)e inθ .

ODE for un(r)

(
d2

dr2
+

1

r

d

dr
− n2

r2

)(
d2

dr2
+

1

r

d

dr
− n2

r2
− λ2

)
un(r) = 0 .

SEPARATION OF VARIABLES

Let Ω be the interior or exterior of a disc of radius R and consider
the modified biharmonic equation:

∆(∆− λ2)u = 0 , x ∈ Ω ,

u = f , ∂nu = g , x ∈ ∂Ω .

Separation of Variables Representation

u(r , θ) =
∞∑

n=−∞
un(r)e inθ .

ODE for un(r)

(
d2

dr2
+

1

r

d

dr
− n2

r2

)(
d2

dr2
+

1

r

d

dr
− n2

r2
− λ2

)
un(r) = 0 .

SEPARATION OF VARIABLES

Let Ω be the interior or exterior of a disc of radius R and consider
the modified biharmonic equation:

∆(∆− λ2)u = 0 , x ∈ Ω ,

u = f , ∂nu = g , x ∈ ∂Ω .

Separation of Variables Representation

u(r , θ) =
∞∑

n=−∞
un(r)e inθ .

ODE for un(r)

(
d2

dr2
+

1

r

d

dr
− n2

r2

)(
d2

dr2
+

1

r

d

dr
− n2

r2
− λ2

)
un(r) = 0 .

SEPARATION OF VARIABLES (CONT.)

ODE for un(r)

(
d2

dr2
+

1

r

d

dr
− n2

r2

)(
d2

dr2
+

1

r

d

dr
− n2

r2
− λ2

)
un(r) = 0 .

Four linearly independent solutions: r |n|, In(λr), r−|n|, and Kn(λr).

Interior Problem

By imposing continuity at r = 0, the functions r |n| and In(λr) are a
basis for the interior problem.

Exterior Problem

By imposing decay conditions r =∞, the functions r−|n| and
Kn(λr) are a basis for the exterior problem.

SEPARATION OF VARIABLES (CONT.)

ODE for un(r)

(
d2

dr2
+

1

r

d

dr
− n2

r2

)(
d2

dr2
+

1

r

d

dr
− n2

r2
− λ2

)
un(r) = 0 .

Four linearly independent solutions: r |n|, In(λr), r−|n|, and Kn(λr).

Interior Problem

By imposing continuity at r = 0, the functions r |n| and In(λr) are a
basis for the interior problem.

Exterior Problem

By imposing decay conditions r =∞, the functions r−|n| and
Kn(λr) are a basis for the exterior problem.

SEPARATION OF VARIABLES (CONT.)

ODE for un(r)

(
d2

dr2
+

1

r

d

dr
− n2

r2

)(
d2

dr2
+

1

r

d

dr
− n2

r2
− λ2

)
un(r) = 0 .

Four linearly independent solutions: r |n|, In(λr), r−|n|, and Kn(λr).

Interior Problem

By imposing continuity at r = 0, the functions r |n| and In(λr) are a
basis for the interior problem.

Exterior Problem

By imposing decay conditions r =∞, the functions r−|n| and
Kn(λr) are a basis for the exterior problem.

A BAD BASIS (EXT.)

For the exterior problem, we have un(r) = αnr
−|n| + βnKn(λr).

Coefficient Recovery Problem

 R−|n| Kn(λR)

−|n|R−|n|−1 −λ
2

(Kn−1(λR) + Kn+1(λR))

(αn

βn

)
=

(
fn
gn

)
.

This problem is ill-conditioned for small λR. Intuitively, this is
because Kn(λr) and r−|n| are similar functions for small r .

Asymptotic Expansion for Kn(λr)

Kn (λr) = 1
2
(1

2
λr)−|n|

|n|−1∑
k=0

(|n| − k − 1)!

k!
(− 1

4
λr 2)k + (−1)|n|+1 ln

(
1
2
λr
)
In (λr)

+ (−1)|n| 1
2
(1

2
λr)|n|

∞∑
k=0

(ψ (k + 1) + ψ (|n|+ k + 1))
(1

4
λr 2)k

k!(|n|+ k)!
.

A BAD BASIS (EXT.)

For the exterior problem, we have un(r) = αnr
−|n| + βnKn(λr).

Coefficient Recovery Problem

 R−|n| Kn(λR)

−|n|R−|n|−1 −λ
2

(Kn−1(λR) + Kn+1(λR))

(αn

βn

)
=

(
fn
gn

)
.

This problem is ill-conditioned for small λR. Intuitively, this is
because Kn(λr) and r−|n| are similar functions for small r .

Asymptotic Expansion for Kn(λr)

Kn (λr) = 1
2
(1

2
λr)−|n|

|n|−1∑
k=0

(|n| − k − 1)!

k!
(− 1

4
λr 2)k + (−1)|n|+1 ln

(
1
2
λr
)
In (λr)

+ (−1)|n| 1
2
(1

2
λr)|n|

∞∑
k=0

(ψ (k + 1) + ψ (|n|+ k + 1))
(1

4
λr 2)k

k!(|n|+ k)!
.

A BAD BASIS (EXT.)

For the exterior problem, we have un(r) = αnr
−|n| + βnKn(λr).

Coefficient Recovery Problem

 R−|n| Kn(λR)

−|n|R−|n|−1 −λ
2

(Kn−1(λR) + Kn+1(λR))

(αn

βn

)
=

(
fn
gn

)
.

This problem is ill-conditioned for small λR. Intuitively, this is
because Kn(λr) and r−|n| are similar functions for small r .

Asymptotic Expansion for Kn(λr)

Kn (λr) = 1
2
(1

2
λr)−|n|

|n|−1∑
k=0

(|n| − k − 1)!

k!
(− 1

4
λr 2)k + (−1)|n|+1 ln

(
1
2
λr
)
In (λr)

+ (−1)|n| 1
2
(1

2
λr)|n|

∞∑
k=0

(ψ (k + 1) + ψ (|n|+ k + 1))
(1

4
λr 2)k

k!(|n|+ k)!
.

A BETTER BASIS (EXT.)

We can define a new basis function for the exterior problem which
is not asymptotically similar to r−|n| and Kn.

Definition of Qn

Qn(r) = Kn(λr)− 2|n|−1 (|n| − 1)!

λ|n|r |n|
.

Qn has a different leading order term for small λ and R.

The pair (Qn,Kn) is a better conditioned basis than
(r−|n|,Kn) in the small λR regime.

Qn is still a solution of the ODE for un because it’s a linear
combo of r−|n| and Kn.

It is simple to evaluate Qn with tweaks to existing software.

A BETTER BASIS (EXT.)

We can define a new basis function for the exterior problem which
is not asymptotically similar to r−|n| and Kn.

Definition of Qn

Qn(r) = Kn(λr)− 2|n|−1 (|n| − 1)!

λ|n|r |n|
.

Qn has a different leading order term for small λ and R.

The pair (Qn,Kn) is a better conditioned basis than
(r−|n|,Kn) in the small λR regime.

Qn is still a solution of the ODE for un because it’s a linear
combo of r−|n| and Kn.

It is simple to evaluate Qn with tweaks to existing software.

A BETTER BASIS (EXT.)

We can define a new basis function for the exterior problem which
is not asymptotically similar to r−|n| and Kn.

Definition of Qn

Qn(r) = Kn(λr)− 2|n|−1 (|n| − 1)!

λ|n|r |n|
.

Qn has a different leading order term for small λ and R.

The pair (Qn,Kn) is a better conditioned basis than
(r−|n|,Kn) in the small λR regime.

Qn is still a solution of the ODE for un because it’s a linear
combo of r−|n| and Kn.

It is simple to evaluate Qn with tweaks to existing software.

A BETTER BASIS (EXT.)

We can define a new basis function for the exterior problem which
is not asymptotically similar to r−|n| and Kn.

Definition of Qn

Qn(r) = Kn(λr)− 2|n|−1 (|n| − 1)!

λ|n|r |n|
.

Qn has a different leading order term for small λ and R.

The pair (Qn,Kn) is a better conditioned basis than
(r−|n|,Kn) in the small λR regime.

Qn is still a solution of the ODE for un because it’s a linear
combo of r−|n| and Kn.

It is simple to evaluate Qn with tweaks to existing software.

A BETTER BASIS (EXT.)

We can define a new basis function for the exterior problem which
is not asymptotically similar to r−|n| and Kn.

Definition of Qn

Qn(r) = Kn(λr)− 2|n|−1 (|n| − 1)!

λ|n|r |n|
.

Qn has a different leading order term for small λ and R.

The pair (Qn,Kn) is a better conditioned basis than
(r−|n|,Kn) in the small λR regime.

Qn is still a solution of the ODE for un because it’s a linear
combo of r−|n| and Kn.

It is simple to evaluate Qn with tweaks to existing software.

A BETTER BASIS (EXT.)

We can define a new basis function for the exterior problem which
is not asymptotically similar to r−|n| and Kn.

Definition of Qn

Qn(r) = Kn(λr)− 2|n|−1 (|n| − 1)!

λ|n|r |n|
.

Qn has a different leading order term for small λ and R.

The pair (Qn,Kn) is a better conditioned basis than
(r−|n|,Kn) in the small λR regime.

Qn is still a solution of the ODE for un because it’s a linear
combo of r−|n| and Kn.

It is simple to evaluate Qn with tweaks to existing software.

A BAD BASIS (INT.)

For the interior problem, we have that un(r) = αnr
|n| + βnIn(λr).

Coefficient Recovery Problem

 R |n| In(λR)

|n|R |n|−1 λ

2
(In−1(λR) + In+1(λR))

(αn

βn

)
=

(
fn
gn

)
.

This problem is again ill-conditioned for small λR.

Asymptotic Expansion for In(λr)

In(λr) =
∞∑
k=0

(
λr

2

)2k+|n|

k!(k + |n|)!
=

1

2|n||n|!
(λr)|n| +

1

2|n|+2(|n|+ 1)!
(λr)|n|+2 + · · ·

A BAD BASIS (INT.)

For the interior problem, we have that un(r) = αnr
|n| + βnIn(λr).

Coefficient Recovery Problem

 R |n| In(λR)

|n|R |n|−1 λ

2
(In−1(λR) + In+1(λR))

(αn

βn

)
=

(
fn
gn

)
.

This problem is again ill-conditioned for small λR.

Asymptotic Expansion for In(λr)

In(λr) =
∞∑
k=0

(
λr

2

)2k+|n|

k!(k + |n|)!
=

1

2|n||n|!
(λr)|n| +

1

2|n|+2(|n|+ 1)!
(λr)|n|+2 + · · ·

A BAD BASIS (INT.)

For the interior problem, we have that un(r) = αnr
|n| + βnIn(λr).

Coefficient Recovery Problem

 R |n| In(λR)

|n|R |n|−1 λ

2
(In−1(λR) + In+1(λR))

(αn

βn

)
=

(
fn
gn

)
.

This problem is again ill-conditioned for small λR.

Asymptotic Expansion for In(λr)

In(λr) =
∞∑
k=0

(
λr

2

)2k+|n|

k!(k + |n|)!
=

1

2|n||n|!
(λr)|n| +

1

2|n|+2(|n|+ 1)!
(λr)|n|+2 + · · ·

A BETTER BASIS (INT.)

Again, we can define a new basis function for the interior problem
which is not asymptotically similar to r |n| and In.

Definition of Pn

Pn(r) = In(λr)−
(
λr

2

)|n| 1

|n|! .

Pn has a different leading order term for small λ and R.

The pair (r |n|,Pn) is a better conditioned basis than (r |n|, In)
in the small λR regime.

Pn is still a solution of the ODE for un because it’s a linear
combo of r |n| and In.

It is simple to evaluate Pn with tweaks to existing software.

A BETTER BASIS (INT.)

Again, we can define a new basis function for the interior problem
which is not asymptotically similar to r |n| and In.

Definition of Pn

Pn(r) = In(λr)−
(
λr

2

)|n| 1

|n|! .

Pn has a different leading order term for small λ and R.

The pair (r |n|,Pn) is a better conditioned basis than (r |n|, In)
in the small λR regime.

Pn is still a solution of the ODE for un because it’s a linear
combo of r |n| and In.

It is simple to evaluate Pn with tweaks to existing software.

A BETTER BASIS (INT.)

Again, we can define a new basis function for the interior problem
which is not asymptotically similar to r |n| and In.

Definition of Pn

Pn(r) = In(λr)−
(
λr

2

)|n| 1

|n|! .

Pn has a different leading order term for small λ and R.

The pair (r |n|,Pn) is a better conditioned basis than (r |n|, In)
in the small λR regime.

Pn is still a solution of the ODE for un because it’s a linear
combo of r |n| and In.

It is simple to evaluate Pn with tweaks to existing software.

A BETTER BASIS (INT.)

Again, we can define a new basis function for the interior problem
which is not asymptotically similar to r |n| and In.

Definition of Pn

Pn(r) = In(λr)−
(
λr

2

)|n| 1

|n|! .

Pn has a different leading order term for small λ and R.

The pair (r |n|,Pn) is a better conditioned basis than (r |n|, In)
in the small λR regime.

Pn is still a solution of the ODE for un because it’s a linear
combo of r |n| and In.

It is simple to evaluate Pn with tweaks to existing software.

A BETTER BASIS (INT.)

Again, we can define a new basis function for the interior problem
which is not asymptotically similar to r |n| and In.

Definition of Pn

Pn(r) = In(λr)−
(
λr

2

)|n| 1

|n|! .

Pn has a different leading order term for small λ and R.

The pair (r |n|,Pn) is a better conditioned basis than (r |n|, In)
in the small λR regime.

Pn is still a solution of the ODE for un because it’s a linear
combo of r |n| and In.

It is simple to evaluate Pn with tweaks to existing software.

A BETTER BASIS (INT.)

Again, we can define a new basis function for the interior problem
which is not asymptotically similar to r |n| and In.

Definition of Pn

Pn(r) = In(λr)−
(
λr

2

)|n| 1

|n|! .

Pn has a different leading order term for small λ and R.

The pair (r |n|,Pn) is a better conditioned basis than (r |n|, In)
in the small λR regime.

Pn is still a solution of the ODE for un because it’s a linear
combo of r |n| and In.

It is simple to evaluate Pn with tweaks to existing software.

NUMERICAL RESULTS (CONT.)

Question

What is the practical effect of the condition number of the
coefficient recovery problem on the accuracy of the solution?

NUMERICAL RESULTS (CONT.)

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Numerical Experiment

u(x;λ) =

ns∑
j=1

λ2cjG(x, sj) + λdj∂vj,1G(x, sj)

+ qj∂vj,2vj,3G(x, sj) .

For several values of λ and R:

Evaluate u and ∂nu on ∂Ω

Solve corresponding separation of
variables problem (order N = 50, using
100 points on ∂Ω) with new and old basis
functions

Evaluate error in potential, gradient, and
Hessian

Should be good to about machine
precision, with some precision loss in the
derivatives

NUMERICAL RESULTS (CONT.)

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Numerical Experiment

u(x;λ) =

ns∑
j=1

λ2cjG(x, sj) + λdj∂vj,1G(x, sj)

+ qj∂vj,2vj,3G(x, sj) .

For several values of λ and R:

Evaluate u and ∂nu on ∂Ω

Solve corresponding separation of
variables problem (order N = 50, using
100 points on ∂Ω) with new and old basis
functions

Evaluate error in potential, gradient, and
Hessian

Should be good to about machine
precision, with some precision loss in the
derivatives

NUMERICAL RESULTS (CONT.)

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Numerical Experiment

u(x;λ) =

ns∑
j=1

λ2cjG(x, sj) + λdj∂vj,1G(x, sj)

+ qj∂vj,2vj,3G(x, sj) .

For several values of λ and R:

Evaluate u and ∂nu on ∂Ω

Solve corresponding separation of
variables problem (order N = 50, using
100 points on ∂Ω) with new and old basis
functions

Evaluate error in potential, gradient, and
Hessian

Should be good to about machine
precision, with some precision loss in the
derivatives

NUMERICAL RESULTS (CONT.)

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Numerical Experiment

u(x;λ) =

ns∑
j=1

λ2cjG(x, sj) + λdj∂vj,1G(x, sj)

+ qj∂vj,2vj,3G(x, sj) .

For several values of λ and R:

Evaluate u and ∂nu on ∂Ω

Solve corresponding separation of
variables problem (order N = 50, using
100 points on ∂Ω) with new and old basis
functions

Evaluate error in potential, gradient, and
Hessian

Should be good to about machine
precision, with some precision loss in the
derivatives

NUMERICAL RESULTS (CONT.)

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Numerical Experiment

u(x;λ) =

ns∑
j=1

λ2cjG(x, sj) + λdj∂vj,1G(x, sj)

+ qj∂vj,2vj,3G(x, sj) .

For several values of λ and R:

Evaluate u and ∂nu on ∂Ω

Solve corresponding separation of
variables problem (order N = 50, using
100 points on ∂Ω) with new and old basis
functions

Evaluate error in potential, gradient, and
Hessian

Should be good to about machine
precision, with some precision loss in the
derivatives

NUMERICAL RESULTS (CONT.)

Errors for the exterior problem: (r−|n|,Kn) vs (Qn,Kn). Top row:
λ→ 0. Bottom row: R → 0.

10−6 10−3 100

λR

10−14

10−12

10−10

10−8

10−6

10−4

10−2

E
u

(Qn, Kn)

(r−n, Kn)

Exact Difference

10−6 10−3 100

λR

10−13

10−10

10−7

10−4

10−1

E
u

(Qn, Kn)

(r−n, Kn)

Exact Difference

10−6 10−3 100

λR

10−16

10−13

10−10

10−7

10−4

10−1

E
g

(Qn, Kn)

(r−n, Kn)

Exact Difference

10−6 10−3 100

λR

10−14

10−11

10−8

10−5

10−2

101

E
g

(Qn, Kn)

(r−n, Kn)

Exact Difference

10−6 10−3 100

λR

10−13

10−10

10−7

10−4

10−1

102

E
h

(Qn, Kn)

(r−n, Kn)

Exact Difference

10−6 10−3 100

λR

10−13

10−10

10−7

10−4

10−1

E
h

(Qn, Kn)

(r−n, Kn)

Exact Difference

NUMERICAL RESULTS (CONT.)

Errors for the interior problem: (r |n|, In) vs (r |n|,Pn). Top row:
λ→ 0. Bottom row: R → 0.

10−5 10−2 101

λR

10−14

10−12

10−10

10−8

10−6

10−4

10−2

E
u

(rn, Pn)

(rn, In)

Exact Difference

10−5 10−2 101

λR

10−14

10−11

10−8

10−5

10−2

E
u

(rn, Pn)

(rn, In)

Exact Difference

10−5 10−2 101

λR

10−14

10−11

10−8

10−5

10−2

101

E
g

(rn, Pn)

(rn, In)

Exact Difference

10−5 10−2 101

λR

10−14

10−11

10−8

10−5

10−2

101

E
g

(rn, Pn)

(rn, In)

Exact Difference

10−5 10−2 101

λR

10−13

10−10

10−7

10−4

10−1

E
h

(rn, Pn)

(rn, In)

Exact Difference

10−5 10−2 101

λR

10−13

10−10

10−7

10−4

10−1

E
h

(rn, Pn)

(rn, In)

Exact Difference

REALITY CHECK

How is this a decomposition?

Recall

u(xi) =
n∑

j=1

qj∂vjwjG(xi , sj)

A =


∂v1w1

G(x1, s1) ∂v2w2
G(x1, s2) · · · ∂vnwnG(x1, sn)

∂v1w1
G(x2, s1) ∂v2w2

G(x2, s2) · · · ∂vnwnG(x2, sn)

.

.

.

.

.

.

.

.

.
∂v1w1

G(xm, s1) ∂v2w2
G(xm, s2) · · · ∂vnwnG(xm, sn)



Well-separated points

REALITY CHECK

How is this a decomposition? Recall

u(xi) =
n∑

j=1

qj∂vjwjG(xi , sj)

A =


∂v1w1

G(x1, s1) ∂v2w2
G(x1, s2) · · · ∂vnwnG(x1, sn)

∂v1w1
G(x2, s1) ∂v2w2

G(x2, s2) · · · ∂vnwnG(x2, sn)

.

.

.

.

.

.

.

.

.
∂v1w1

G(xm, s1) ∂v2w2
G(xm, s2) · · · ∂vnwnG(xm, sn)



Well-separated points

ANALYTICAL DECOMPOSITION

A = LRᵀ.

The form of L is straightforward

L =


Q0(|x1 − c|) K0(λ|x1 − c|) · · · Qp(|x1 − c|)e ipθ1 Kp(λ|x1 − c|)e ipθ1

Q0(|x2 − c|) K0(λ|x2 − c|) · · · Qp(|x2 − c|)e ipθ2 Kp(λ|x2 − c|)e ipθ2

.

.

.

.

.

.

.

.

.

.

.

.

Q0(|xm − c|) K0(λ|xm − c|) · · · Qp(|xm − c|)e ipθm Kp(λ|xm − c|)e ipθm



What is Rᵀ? It is the map from the sources to the coefficients

Rᵀ =

each mode

solve 2× 2

for coeffs

separate

modes with

FFT

evaluate both

u and ∂nu on disc

boundary

Note that there is an analytical formula for Rᵀ [Askham, 2017].

ANALYTICAL DECOMPOSITION

A = LRᵀ. The form of L is straightforward

L =


Q0(|x1 − c|) K0(λ|x1 − c|) · · · Qp(|x1 − c|)e ipθ1 Kp(λ|x1 − c|)e ipθ1

Q0(|x2 − c|) K0(λ|x2 − c|) · · · Qp(|x2 − c|)e ipθ2 Kp(λ|x2 − c|)e ipθ2

.

.

.

.

.

.

.

.

.

.

.

.

Q0(|xm − c|) K0(λ|xm − c|) · · · Qp(|xm − c|)e ipθm Kp(λ|xm − c|)e ipθm



What is Rᵀ? It is the map from the sources to the coefficients

Rᵀ =

each mode

solve 2× 2

for coeffs

separate

modes with

FFT

evaluate both

u and ∂nu on disc

boundary

Note that there is an analytical formula for Rᵀ [Askham, 2017].

ANALYTICAL DECOMPOSITION

A = LRᵀ. The form of L is straightforward

L =


Q0(|x1 − c|) K0(λ|x1 − c|) · · · Qp(|x1 − c|)e ipθ1 Kp(λ|x1 − c|)e ipθ1

Q0(|x2 − c|) K0(λ|x2 − c|) · · · Qp(|x2 − c|)e ipθ2 Kp(λ|x2 − c|)e ipθ2

.

.

.

.

.

.

.

.

.

.

.

.

Q0(|xm − c|) K0(λ|xm − c|) · · · Qp(|xm − c|)e ipθm Kp(λ|xm − c|)e ipθm



What is Rᵀ?

It is the map from the sources to the coefficients

Rᵀ =

each mode

solve 2× 2

for coeffs

separate

modes with

FFT

evaluate both

u and ∂nu on disc

boundary

Note that there is an analytical formula for Rᵀ [Askham, 2017].

ANALYTICAL DECOMPOSITION

A = LRᵀ. The form of L is straightforward

L =


Q0(|x1 − c|) K0(λ|x1 − c|) · · · Qp(|x1 − c|)e ipθ1 Kp(λ|x1 − c|)e ipθ1

Q0(|x2 − c|) K0(λ|x2 − c|) · · · Qp(|x2 − c|)e ipθ2 Kp(λ|x2 − c|)e ipθ2

.

.

.

.

.

.

.

.

.

.

.

.

Q0(|xm − c|) K0(λ|xm − c|) · · · Qp(|xm − c|)e ipθm Kp(λ|xm − c|)e ipθm



What is Rᵀ? It is the map from the sources to the coefficients

Rᵀ =

each mode

solve 2× 2

for coeffs

separate

modes with

FFT

evaluate both

u and ∂nu on disc

boundary

Note that there is an analytical formula for Rᵀ [Askham, 2017].

WHAT OF EFFICIENCY?

Because the formulas for L and Rᵀ are known, forming these
matrices is O((m + n)p).

The SVD, on the other hand is O(mn2).
Even randomized methods for the SVD are O(mnp).

It is not always the case that sources are well-separated from
targets. Can we make a stable FMM with the above?

WHAT OF EFFICIENCY?

Because the formulas for L and Rᵀ are known, forming these
matrices is O((m + n)p). The SVD, on the other hand is O(mn2).

Even randomized methods for the SVD are O(mnp).

It is not always the case that sources are well-separated from
targets. Can we make a stable FMM with the above?

WHAT OF EFFICIENCY?

Because the formulas for L and Rᵀ are known, forming these
matrices is O((m + n)p). The SVD, on the other hand is O(mn2).
Even randomized methods for the SVD are O(mnp).

It is not always the case that sources are well-separated from
targets. Can we make a stable FMM with the above?

WHAT OF EFFICIENCY?

Because the formulas for L and Rᵀ are known, forming these
matrices is O((m + n)p). The SVD, on the other hand is O(mn2).
Even randomized methods for the SVD are O(mnp).

It is not always the case that sources are well-separated from
targets. Can we make a stable FMM with the above?

AN FMM

The preceding provides a stable fast multipole method

A fast multipole method is based on:

1 a formula for representing the sum due to a localized subset of
the points (a multipole expansion). (Qn,Kn)

2 a formula for representing the sum due to points outside of a
disc (a local expansion). (r |n|,Pn)

3 formulas for translating between these representations
(translation operators). see the preprint!

4 a hierarchical organization of source and target points in space

AN FMM

The preceding provides a stable fast multipole method

A fast multipole method is based on:

1 a formula for representing the sum due to a localized subset of
the points (a multipole expansion). (Qn,Kn)

2 a formula for representing the sum due to points outside of a
disc (a local expansion). (r |n|,Pn)

3 formulas for translating between these representations
(translation operators). see the preprint!

4 a hierarchical organization of source and target points in space

AN FMM

The preceding provides a stable fast multipole method

A fast multipole method is based on:

1 a formula for representing the sum due to a localized subset of
the points (a multipole expansion). (Qn,Kn)

2 a formula for representing the sum due to points outside of a
disc (a local expansion). (r |n|,Pn)

3 formulas for translating between these representations
(translation operators). see the preprint!

4 a hierarchical organization of source and target points in space

AN FMM

The preceding provides a stable fast multipole method

A fast multipole method is based on:

1 a formula for representing the sum due to a localized subset of
the points (a multipole expansion). (Qn,Kn)

2 a formula for representing the sum due to points outside of a
disc (a local expansion). (r |n|,Pn)

3 formulas for translating between these representations
(translation operators). see the preprint!

4 a hierarchical organization of source and target points in space

AN FMM

The preceding provides a stable fast multipole method

A fast multipole method is based on:

1 a formula for representing the sum due to a localized subset of
the points (a multipole expansion). (Qn,Kn)

2 a formula for representing the sum due to points outside of a
disc (a local expansion). (r |n|,Pn)

3 formulas for translating between these representations
(translation operators). see the preprint!

4 a hierarchical organization of source and target points in space

COMPUTING THE
PARTICULAR SOLUTION

EVALUATING THE PARTICULAR SOLUTION

To compute the particular solution, we need to evaluate integrals
of the form

v(x) = Vf (x) :=

∫
Ω
K(x, y)f (y) dy ,

where K(x, y) = log |x− y| or K(x, y) = K0(λ|x− y|).

No solve, just apply

Weakly singular integrand

Expensive on an unstructured discretization (adpative
quadrature, etc.)

Fast methods for regular domains

Disc solvers
“Box codes” (Ethridge and Greengard, Cheng et al., Langston
and Zorin)

EVALUATING THE PARTICULAR SOLUTION

To compute the particular solution, we need to evaluate integrals
of the form

v(x) = Vf (x) :=

∫
Ω
K(x, y)f (y) dy ,

where K(x, y) = log |x− y| or K(x, y) = K0(λ|x− y|).

No solve, just apply

Weakly singular integrand

Expensive on an unstructured discretization (adpative
quadrature, etc.)

Fast methods for regular domains

Disc solvers
“Box codes” (Ethridge and Greengard, Cheng et al., Langston
and Zorin)

EVALUATING THE PARTICULAR SOLUTION

To compute the particular solution, we need to evaluate integrals
of the form

v(x) = Vf (x) :=

∫
Ω
K(x, y)f (y) dy ,

where K(x, y) = log |x− y| or K(x, y) = K0(λ|x− y|).

No solve, just apply

Weakly singular integrand

Expensive on an unstructured discretization (adpative
quadrature, etc.)

Fast methods for regular domains

Disc solvers
“Box codes” (Ethridge and Greengard, Cheng et al., Langston
and Zorin)

EVALUATING THE PARTICULAR SOLUTION

To compute the particular solution, we need to evaluate integrals
of the form

v(x) = Vf (x) :=

∫
Ω
K(x, y)f (y) dy ,

where K(x, y) = log |x− y| or K(x, y) = K0(λ|x− y|).

No solve, just apply

Weakly singular integrand

Expensive on an unstructured discretization (adpative
quadrature, etc.)

Fast methods for regular domains

Disc solvers
“Box codes” (Ethridge and Greengard, Cheng et al., Langston
and Zorin)

EVALUATING THE PARTICULAR SOLUTION

To compute the particular solution, we need to evaluate integrals
of the form

v(x) = Vf (x) :=

∫
Ω
K(x, y)f (y) dy ,

where K(x, y) = log |x− y| or K(x, y) = K0(λ|x− y|).

No solve, just apply

Weakly singular integrand

Expensive on an unstructured discretization (adpative
quadrature, etc.)

Fast methods for regular domains

Disc solvers
“Box codes” (Ethridge and Greengard, Cheng et al., Langston
and Zorin)

BOX CODES, IN BRIEF

Box codes (typically) work on level-restricted trees and are very
efficient (density f defined on leaves):

Limited number of possible local interactions (precomputation
of integrals to near machine precision)
(plane wave) FMM for far-field
Very fast, even on adaptive grids

BOX CODES, IN BRIEF

Box codes (typically) work on level-restricted trees and are very
efficient (density f defined on leaves):

Limited number of possible local interactions (precomputation
of integrals to near machine precision)

(plane wave) FMM for far-field
Very fast, even on adaptive grids

BOX CODES, IN BRIEF

Box codes (typically) work on level-restricted trees and are very
efficient (density f defined on leaves):

Limited number of possible local interactions (precomputation
of integrals to near machine precision)
(plane wave) FMM for far-field

Very fast, even on adaptive grids

BOX CODES, IN BRIEF

Box codes (typically) work on level-restricted trees and are very
efficient (density f defined on leaves):

Limited number of possible local interactions (precomputation
of integrals to near machine precision)
(plane wave) FMM for far-field
Very fast, even on adaptive grids

BOX CODE SPEED

BOX CODE ERROR ESTIMATE

The application of a bounded operator is easy to analyze

The box code computes the volume integral at collocation nodes
to a specified precision.

Notation:

f̃ : approximation to f by polynomials on each leaf

Ṽ f̃ (x): value of V f̃ (x) computed using box code

ε: precision of FMM

From multipole estimates:

|Ṽ f̃ (x)− V f̃ (x)| ≤ ε‖f̃ ‖1 ,

From triangle inequality and boundedness of V :

|Ṽ f̃ (x)− Vf (x)|
‖f̃ ‖∞

≤ ε|Ω|+ C (Ω)
‖f − f̃ ‖∞
‖f̃ ‖∞

.

Gives an a priori error estimate (similar for ∇V).

BOX CODE ERROR ESTIMATE

The application of a bounded operator is easy to analyze

The box code computes the volume integral at collocation nodes
to a specified precision.

Notation:

f̃ : approximation to f by polynomials on each leaf

Ṽ f̃ (x): value of V f̃ (x) computed using box code

ε: precision of FMM

From multipole estimates:

|Ṽ f̃ (x)− V f̃ (x)| ≤ ε‖f̃ ‖1 ,

From triangle inequality and boundedness of V :

|Ṽ f̃ (x)− Vf (x)|
‖f̃ ‖∞

≤ ε|Ω|+ C (Ω)
‖f − f̃ ‖∞
‖f̃ ‖∞

.

Gives an a priori error estimate (similar for ∇V).

BOX CODE ERROR ESTIMATE

The application of a bounded operator is easy to analyze

The box code computes the volume integral at collocation nodes
to a specified precision.

Notation:

f̃ : approximation to f by polynomials on each leaf

Ṽ f̃ (x): value of V f̃ (x) computed using box code

ε: precision of FMM

From multipole estimates:

|Ṽ f̃ (x)− V f̃ (x)| ≤ ε‖f̃ ‖1 ,

From triangle inequality and boundedness of V :

|Ṽ f̃ (x)− Vf (x)|
‖f̃ ‖∞

≤ ε|Ω|+ C (Ω)
‖f − f̃ ‖∞
‖f̃ ‖∞

.

Gives an a priori error estimate (similar for ∇V).

BOX CODE ERROR ESTIMATE

The application of a bounded operator is easy to analyze

The box code computes the volume integral at collocation nodes
to a specified precision.

Notation:

f̃ : approximation to f by polynomials on each leaf

Ṽ f̃ (x): value of V f̃ (x) computed using box code

ε: precision of FMM

From multipole estimates:

|Ṽ f̃ (x)− V f̃ (x)| ≤ ε‖f̃ ‖1 ,

From triangle inequality and boundedness of V :

|Ṽ f̃ (x)− Vf (x)|
‖f̃ ‖∞

≤ ε|Ω|+ C (Ω)
‖f − f̃ ‖∞
‖f̃ ‖∞

.

Gives an a priori error estimate (similar for ∇V).

BOX CODE ERROR ESTIMATE

The application of a bounded operator is easy to analyze

The box code computes the volume integral at collocation nodes
to a specified precision.

Notation:

f̃ : approximation to f by polynomials on each leaf

Ṽ f̃ (x): value of V f̃ (x) computed using box code

ε: precision of FMM

From multipole estimates:

|Ṽ f̃ (x)− V f̃ (x)| ≤ ε‖f̃ ‖1 ,

From triangle inequality and boundedness of V :

|Ṽ f̃ (x)− Vf (x)|
‖f̃ ‖∞

≤ ε|Ω|+ C (Ω)
‖f − f̃ ‖∞
‖f̃ ‖∞

.

Gives an a priori error estimate (similar for ∇V).

BOX CODE ERROR ESTIMATE

The application of a bounded operator is easy to analyze

The box code computes the volume integral at collocation nodes
to a specified precision.

Notation:

f̃ : approximation to f by polynomials on each leaf

Ṽ f̃ (x): value of V f̃ (x) computed using box code

ε: precision of FMM

From multipole estimates:

|Ṽ f̃ (x)− V f̃ (x)| ≤ ε‖f̃ ‖1 ,

From triangle inequality and boundedness of V :

|Ṽ f̃ (x)− Vf (x)|
‖f̃ ‖∞

≤ ε|Ω|+ C (Ω)
‖f − f̃ ‖∞
‖f̃ ‖∞

.

Gives an a priori error estimate (similar for ∇V).

EMBEDDING IN A BOX

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Figure: The domain Ω with an adaptive tree structure
overlaying it.

Let Ω be contained in a box ΩB

and let fe |Ω = f be defined on all
of ΩB . Then

Vfe(x) =

∫
ΩB

GL(x, y)fe(y) dy

is another particular solution and
Vfe can be computed using a box
code.

FUNCTION EXTENSION

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Figure: The domain Ω with an adaptive tree structure
overlaying it.

What if a smooth extension fe is
not readily available?

It must be computed in some
way.

COMPUTING THE EXTENDED FUNCTION

Figure: Example of a “cut-cell”.

Extend by zero
[Ethridge and Greengard, 2001]

Local function extension
[Ethridge, 2000, Langston, 2012]

Global extension by layer potential
[Askham, 2016] (C 0) and
[Rachh and Askham, 2017] (C 1)

Globalized local extension
[Fryklund et al., 2017] (PUX)

COMPUTING THE EXTENDED FUNCTION

Figure: Example of a “cut-cell”.

Extend by zero
[Ethridge and Greengard, 2001]

Local function extension
[Ethridge, 2000, Langston, 2012]

Global extension by layer potential
[Askham, 2016] (C 0) and
[Rachh and Askham, 2017] (C 1)

Globalized local extension
[Fryklund et al., 2017] (PUX)

COMPUTING THE EXTENDED FUNCTION

Figure: Example of a “cut-cell”.

Extend by zero
[Ethridge and Greengard, 2001]

Local function extension
[Ethridge, 2000, Langston, 2012]

Global extension by layer potential
[Askham, 2016] (C 0) and
[Rachh and Askham, 2017] (C 1)

Globalized local extension
[Fryklund et al., 2017] (PUX)

COMPUTING THE EXTENDED FUNCTION

Figure: Example of a “cut-cell”.

Extend by zero
[Ethridge and Greengard, 2001]

Local function extension
[Ethridge, 2000, Langston, 2012]

Global extension by layer potential
[Askham, 2016] (C 0) and
[Rachh and Askham, 2017] (C 1)

Globalized local extension
[Fryklund et al., 2017] (PUX)

COMPUTING THE EXTENDED FUNCTION

Figure: Example of a “cut-cell”.

Extend by zero
[Ethridge and Greengard, 2001]

Local function extension
[Ethridge, 2000, Langston, 2012]

Global extension by layer potential
[Askham, 2016] (C 0) and
[Rachh and Askham, 2017] (C 1)

Globalized local extension
[Fryklund et al., 2017] (PUX)

EXTENSION WITH LAYER POTENTIALS

Let f be defined on Ω with boundary Γ. Then, define a function w
on R2 \ Ω as the solution of

∆w = 0 in R2 \ Ω ,

w = f |Γ on Γ .

Then fe = f on Ω and fe = w outside is a globally continuous
extension of f .

w can be computed using the same numerical tools as for uh
(generalized Gaussian quads, fast solvers, QBX)

smoother extensions can be obtained as solutions of
polyharmonic problems.

EXTENSION WITH LAYER POTENTIALS

Let f be defined on Ω with boundary Γ. Then, define a function w
on R2 \ Ω as the solution of

∆w = 0 in R2 \ Ω ,

w = f |Γ on Γ .

Then fe = f on Ω and fe = w outside is a globally continuous
extension of f .

w can be computed using the same numerical tools as for uh
(generalized Gaussian quads, fast solvers, QBX)

smoother extensions can be obtained as solutions of
polyharmonic problems.

EXTENSION WITH LAYER POTENTIALS

Let f be defined on Ω with boundary Γ. Then, define a function w
on R2 \ Ω as the solution of

∆w = 0 in R2 \ Ω ,

w = f |Γ on Γ .

Then fe = f on Ω and fe = w outside is a globally continuous
extension of f .

w can be computed using the same numerical tools as for uh
(generalized Gaussian quads, fast solvers, QBX)

smoother extensions can be obtained as solutions of
polyharmonic problems.

ERROR ESTIMATE FOR NON-SMOOTH fe

Recall the a priori error bound

|Ṽ f̃e(x)− Vfe(x)|
‖f̃e‖∞

≤ ε|Ω|+ C (Ω)
‖fe − f̃e‖∞
‖f̃e‖∞

Implied convergence rate

Conv. Order Vf Conv. Order ∇Vf
zero extension 0 0
C 0 extension 1 1
C 1 extension 2 2

These aren’t amazing. What rate do we observe?

ERROR ESTIMATE FOR NON-SMOOTH fe

Recall the a priori error bound

|Ṽ f̃e(x)− Vfe(x)|
‖f̃e‖∞

≤ ε|Ω|+ C (Ω)
‖fe − f̃e‖∞
‖f̃e‖∞

Implied convergence rate

Conv. Order Vf Conv. Order ∇Vf
zero extension 0 0
C 0 extension 1 1
C 1 extension 2 2

These aren’t amazing. What rate do we observe?

ERROR ESTIMATE FOR NON-SMOOTH fe

Recall the a priori error bound

|Ṽ f̃e(x)− Vfe(x)|
‖f̃e‖∞

≤ ε|Ω|+ C (Ω)
‖fe − f̃e‖∞
‖f̃e‖∞

Implied convergence rate

Conv. Order Vf Conv. Order ∇Vf
zero extension 0 0
C 0 extension 1 1
C 1 extension 2 2

These aren’t amazing. What rate do we observe?

POISSON EQUATION EXAMPLES

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Figure: The domain Ω with an adaptive tree structure
overlaying it.

∆u = f in Ω ,

u = ub on Γ .

We set f and ub so that the
solution u is given by

u(x) = sin(10(x1+x2))+x2
1−3x2+8 .

EXTENDED f

We extend f using the method and tools described above.

CONVERGENCE RATE (UNIFORM GRID)

Error in potential

104 105

no. discretization points

10−10

10−9

10−8

10−7

10−6

10−5

10−4

ab
so

lu
te

er
ro

r

zero ext.

C0 ext.

C1 ext.

2nd order

3rd order

4th order

Error in gradient

104 105

no. discretization points

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ab
so

lu
te

er
ro

r

zero ext.

C0 ext.

C1 ext.

1st order

2nd order

3rd order

Conv. Order u Conv. Order ∇u
predicted observed predicted observed

zero extension 0 2 0 1
C 0 extension 1 3 1 2
C 1 extension 2 4 2 3

How?

CONVERGENCE RATE (UNIFORM GRID)

Error in potential

104 105

no. discretization points

10−10

10−9

10−8

10−7

10−6

10−5

10−4

ab
so

lu
te

er
ro

r

zero ext.

C0 ext.

C1 ext.

2nd order

3rd order

4th order

Error in gradient

104 105

no. discretization points

10−7

10−6

10−5

10−4

10−3

10−2

10−1

ab
so

lu
te

er
ro

r

zero ext.

C0 ext.

C1 ext.

1st order

2nd order

3rd order

Conv. Order u Conv. Order ∇u
predicted observed predicted observed

zero extension 0 2 0 1
C 0 extension 1 3 1 2
C 1 extension 2 4 2 3

How?

OBSERVED CONVERGENCE RATE

To see that you gain 1 order:

v(x) = − 1

2π

∫
log ‖x−y‖f (y) dy , ∇v(x) = − 1

2π

∫
x− y

‖x− y‖2
f (y) dy

x

Local contribution gets
weighted by area of a cell
(gain h2 for log r and h for
1/r)

For the far-field, only
O(1/h) of the boxes are
irregular (have to add up
carefully for gradient) and
each is area h2

The gain of 2 orders for u is somewhat mysterious!

OBSERVED CONVERGENCE RATE

To see that you gain 1 order:

v(x) = − 1

2π

∫
log ‖x−y‖f (y) dy , ∇v(x) = − 1

2π

∫
x− y

‖x− y‖2
f (y) dy

x

Local contribution gets
weighted by area of a cell
(gain h2 for log r and h for
1/r)

For the far-field, only
O(1/h) of the boxes are
irregular (have to add up
carefully for gradient) and
each is area h2

The gain of 2 orders for u is somewhat mysterious!

OBSERVED CONVERGENCE RATE

To see that you gain 1 order:

v(x) = − 1

2π

∫
log ‖x−y‖f (y) dy , ∇v(x) = − 1

2π

∫
x− y

‖x− y‖2
f (y) dy

x

Local contribution gets
weighted by area of a cell
(gain h2 for log r and h for
1/r)

For the far-field, only
O(1/h) of the boxes are
irregular (have to add up
carefully for gradient) and
each is area h2

The gain of 2 orders for u is somewhat mysterious!

OBSERVED CONVERGENCE RATE

To see that you gain 1 order:

v(x) = − 1

2π

∫
log ‖x−y‖f (y) dy , ∇v(x) = − 1

2π

∫
x− y

‖x− y‖2
f (y) dy

x

Local contribution gets
weighted by area of a cell
(gain h2 for log r and h for
1/r)

For the far-field, only
O(1/h) of the boxes are
irregular (have to add up
carefully for gradient) and
each is area h2

The gain of 2 orders for u is somewhat mysterious!

ADAPTIVE GRIDDING STRATEGIES

What are good (a priori) strategies for adaptive grids? Recall that
f̃e is the local polynomial interpolant on each box.

1 Enforce that ‖fe − f̃e‖ ≤ tol on each leaf

2 Enforce that h2‖fe − f̃e‖ ≤ tol on each leaf

3 Enforce that h‖fe − f̃e‖ ≤ tol on each leaf

4 Hybrid: enforce one criterion on irregular boxes and another
on regular boxes (these perform best)

Note that by storing local expansions and QBX expansions from a
QBX FMM, the QBX method gives you an oracle for fe

ADAPTIVE GRIDDING STRATEGIES

What are good (a priori) strategies for adaptive grids? Recall that
f̃e is the local polynomial interpolant on each box.

1 Enforce that ‖fe − f̃e‖ ≤ tol on each leaf

2 Enforce that h2‖fe − f̃e‖ ≤ tol on each leaf

3 Enforce that h‖fe − f̃e‖ ≤ tol on each leaf

4 Hybrid: enforce one criterion on irregular boxes and another
on regular boxes (these perform best)

Note that by storing local expansions and QBX expansions from a
QBX FMM, the QBX method gives you an oracle for fe

ADAPTIVE GRIDDING STRATEGIES

What are good (a priori) strategies for adaptive grids? Recall that
f̃e is the local polynomial interpolant on each box.

1 Enforce that ‖fe − f̃e‖ ≤ tol on each leaf

2 Enforce that h2‖fe − f̃e‖ ≤ tol on each leaf

3 Enforce that h‖fe − f̃e‖ ≤ tol on each leaf

4 Hybrid: enforce one criterion on irregular boxes and another
on regular boxes (these perform best)

Note that by storing local expansions and QBX expansions from a
QBX FMM, the QBX method gives you an oracle for fe

ADAPTIVE GRIDDING STRATEGIES

What are good (a priori) strategies for adaptive grids? Recall that
f̃e is the local polynomial interpolant on each box.

1 Enforce that ‖fe − f̃e‖ ≤ tol on each leaf

2 Enforce that h2‖fe − f̃e‖ ≤ tol on each leaf

3 Enforce that h‖fe − f̃e‖ ≤ tol on each leaf

4 Hybrid: enforce one criterion on irregular boxes and another
on regular boxes (these perform best)

Note that by storing local expansions and QBX expansions from a
QBX FMM, the QBX method gives you an oracle for fe

ADAPTIVE GRIDDING STRATEGIES

What are good (a priori) strategies for adaptive grids? Recall that
f̃e is the local polynomial interpolant on each box.

1 Enforce that ‖fe − f̃e‖ ≤ tol on each leaf

2 Enforce that h2‖fe − f̃e‖ ≤ tol on each leaf

3 Enforce that h‖fe − f̃e‖ ≤ tol on each leaf

4 Hybrid: enforce one criterion on irregular boxes and another
on regular boxes (these perform best)

Note that by storing local expansions and QBX expansions from a
QBX FMM, the QBX method gives you an oracle for fe

ADAPTIVE GRIDDING STRATEGIES

What are good (a priori) strategies for adaptive grids? Recall that
f̃e is the local polynomial interpolant on each box.

1 Enforce that ‖fe − f̃e‖ ≤ tol on each leaf

2 Enforce that h2‖fe − f̃e‖ ≤ tol on each leaf

3 Enforce that h‖fe − f̃e‖ ≤ tol on each leaf

4 Hybrid: enforce one criterion on irregular boxes and another
on regular boxes (these perform best)

Note that by storing local expansions and QBX expansions from a
QBX FMM, the QBX method gives you an oracle for fe

ADAPTIVE PERFORMANCE

Results for hybrid schemes

104 105 106

no. discretization points

10−10

10−9

10−8

10−7

10−6

10−5

ab
so

lu
te

er
ro

r

1 on reg, h on irreg

1 on reg, h2 on irreg

uniform

104 105 106

no. discretization points

10−6

10−5

10−4

10−3

10−2

ab
so

lu
te

er
ro

r

1 on reg, h on irreg

1 on reg, h2 on irreg

uniform

103 104 105 106

no. discretization points

10−8

10−7

10−6

10−5

10−4

ab
so

lu
te

er
ro

r

h on reg, h on irreg

h on reg, h2 on irreg

uniform

103 104 105 106

no. discretization points

10−5

10−4

10−3

10−2

10−1

ab
so

lu
te

er
ro

r

h on reg, h on irreg

h on reg, h2 on irreg

uniform

MORE DIFFICULT PROBLEM

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

Figure: Adaptive box structure.

∆u = f in Ω ,

u = ub on Γ .

We set f and ub so that the
solution u is given by

u(x) = sin(10(x1 + x2)) + x2
1

−3x2 + 8 + e−(500x1)2
,

which requires lots of refinement
near the x2 axis.

ERROR (ADAPTIVE PERFORMANCE)

103 104 105 106 107

Number of discretization points

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Ab
so

lu
te

 e
rr

or

err, cts-uniform
err, cts-adaptive
3rd order

Figure: Error in potential vs. number of discretization
nodes

103 104 105 106 107

Number of discretization points

10-5

10-4

10-3

10-2

10-1

100

101

102

103

Ab
so

lu
te

 e
rr

or

err, cts-uniform
err, cts-adaptive
2nd order

Figure: Error in gradient vs. number of discretization
nodes

FUTURE WORK

Some plans

Apply modified biharmonic FMM to Navier-Stokes integral
equation methods

Release wrapped solver with latest and greatest QBX
implementation

Implement adaptive-friendly version of biharmonic code

THANK YOU

Thank you.

BIBLIOGRAPHY I

[Askham, 2016] Askham, T. (2016).
Integral-equation methods for inhomogeneous elliptic partial differential equations in complex geometry.
PhD thesis, New York University.

[Askham, 2017] Askham, T. (2017).
A stabilized separation of variables method for the modified biharmonic equation.
arXiv preprint arXiv:1710.05408.

[Askham and Cerfon, 2017] Askham, T. and Cerfon, A. J. (2017).
An adaptive fast multipole accelerated poisson solver for complex geometries.
Journal of Computational Physics, 344:1–22.

[Biros et al., 2002] Biros, G., Ying, L., and Zorin, D. (2002).
The embedded boundary integral method for the incompressible navier-stokes equations.
In Proceedings of the International Association for Boundary Element Methods 2002 Symposium.

[Cheng et al., 2006] Cheng, H., Huang, J., and Leiterman, T. J. (2006).
An adaptive fast solver for the modified helmholtz equation in two dimensions.
Journal of Computational Physics, 211(2):616–637.

[Ethridge and Greengard, 2001] Ethridge, F. and Greengard, L. (2001).
A new fast-multipole accelerated poisson solver in two dimensions.
SIAM Journal on Scientific Computing, 23(3):741–760.

[Ethridge, 2000] Ethridge, J. F. (2000).
Fast algorithms for volume integrals in potential theory.
PhD thesis, New York University.

[Fryklund et al., 2017] Fryklund, F., Lehto, E., and Tornberg, A.-K. (2017).
Partition of unity extension of functions on complex domains.
arXiv preprint arXiv:1712.08461.

BIBLIOGRAPHY II

[Greengard and Rokhlin, 1987] Greengard, L. and Rokhlin, V. (1987).
A fast algorithm for particle simulations.
Journal of computational physics, 73(2):325–348.

[Langston, 2012] Langston, M. H. (2012).
An Adaptive Fast Multipole Method-Based PDE Solver in Three Dimensions.
PhD thesis, New York University.

[Malhotra et al., 2017] Malhotra, D., Rahimian, A., Zorin, D., and Biros, G. (2017).
A parallel algorithm for long-timescale simulation of concentrated vesicle suspensions in three dimensions.
preprint.

[Mayo, 1984] Mayo, A. (1984).
The fast solution of poisson’s and the biharmonic equations on irregular regions.
SIAM Journal on Numerical Analysis, 21(2):285–299.

[McKenney et al., 1995] McKenney, A., Greengard, L., and Mayo, A. (1995).
A fast poisson solver for complex geometries.
Journal of Computational Physics, 118(2):348–355.

[Ojala, 2012] Ojala, R. (2012).
A robust and accurate solver of laplace’s equation with general boundary conditions on general domains in the
plane.
Journal of Computational Mathematics, 30(4):433–448.

[Rachh and Askham, 2017] Rachh, M. and Askham, T. (2017).
Integral equation formulation of the biharmonic dirichlet problem.
Journal of Scientific Computing, pages 1–20.

	EVALUATING THE BOUNDARY CORRECTION
	COMPUTING THE PARTICULAR SOLUTION

